Log-concave probability and its applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Steiner Symmetrization of Log–concave Functions and Its Applications

In this paper, we give a new definition of functional Steiner symmetrizations on logconcave functions. Using the functional Steiner symmetrization, we give a new proof of the classical Prékopa-Leindler inequality on log-concave functions.

متن کامل

Functional Inequalities for Gaussian and Log-Concave Probability Measures

We give three proofs of a functional inequality for the standard Gaussian measure originally due to William Beckner. The first uses the central limit theorem and a tensorial property of the inequality. The second uses the Ornstein-Uhlenbeck semigroup, and the third uses the heat semigroup. These latter two proofs yield a more general inequality than the one Beckner originally proved. We then ge...

متن کامل

Small ball probability estimates for log-concave measures

We establish a small ball probability inequality for isotropic log-concave probability measures: there exist absolute constants c1, c2 > 0 such that if X is an isotropic log-concave random vector in R with ψ2 constant bounded by b and if A is a non-zero n × n matrix, then for every ε ∈ (0, c1) and y ∈ R, P (‖Ax− y‖2 6 ε‖A‖HS) 6 ε ` c2 b ‖A‖HS ‖A‖op ́2 , where c1, c2 > 0 are absolute constants.

متن کامل

Approximation by Log - Concave Distributions with Applications to Regression

We study the approximation of arbitrary distributions P on ddimensional space by distributions with log-concave density. Approximation means minimizing a Kullback–Leibler type functional. We show that such an approximation exists if, and only if, P has finite first moments and is not supported by some hyperplane. Furthermore we show that this approximation depends continuously on P with respect...

متن کامل

Smoothed log-concave maximum likelihood estimation with applications

We study the smoothed log-concave maximum likelihood estimator of a probability distribution on Rd. This is a fully automatic nonparametric density estimator, obtained as a canonical smoothing of the log-concave maximum likelihood estimator. We demonstrate its attractive features both through an analysis of its theoretical properties and a simulation study. Moreover, we use our methodology to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Economic Theory

سال: 2005

ISSN: 0938-2259,1432-0479

DOI: 10.1007/s00199-004-0514-4